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Forming COVID-19 Policy Under Uncertainty

Abstract: This paper presentsmy thinking and concerns about formation of COVID-
19 policy. Policy formation must cope with substantial uncertainties about the nature
of the disease, the dynamics of transmission, and behavioral responses. Data uncer-
tainties limit our knowledge of the past trajectory and current state of the pandemic.
Data and modeling uncertainties limit our ability to predict the impacts of alternative
policies. I explain why current epidemiological and macroeconomic modeling can-
not deliver realistically optimal policy. I describe my recent work quantifying basic
data uncertainties that make policy analysis difficult. I discuss approaches for policy
choice under uncertainty and suggest adaptive policy diversification.
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1. Introduction

Throughout my career, I have performed econometric research and decision analysis
that seeks to characterize and copewith uncertainties that arise in evaluation of public
policy. During the past 10 years, I have particularly studied patient care under
uncertainty, considering both clinical decision making and population health policy.
Manski (2013a; 2019a) exposits my work on these subjects.

With the onset of the coronavirus pandemic, I am seeking to bringmy research to
bear. This paper describes my current thinking and concerns. While I focus on
COVID-19 policy, much that I write here is relevant to benefit–cost analysis more
widely, as uncertainty is a pervasive problem in policy evaluation.
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To summarize my main points up front, formation of COVID-19 policy must
cope with substantial uncertainties about the nature of the disease, the dynamics of
transmission, and behavioral responses. Data uncertainties limit our knowledge of
the past trajectory and current state of the pandemic. Data andmodeling uncertainties
limit our ability to predict the impacts of alternative policies. These uncertainties have
been well-recognized qualitatively, but they have not been well-characterized quan-
titatively. Credible measurement of COVID uncertainties is needed to make useful
predictions of policy impacts and reasonable policy decisions.

I have persistently argued for forthright communication of uncertainty in report-
ing of official statistics and in research that aims to inform policy (Manski, 2011;
2015; 2019b). I have criticized the prevalent practice of policy analysis with incred-
ible certitude. Exact predictions of policy outcomes are routine. Expressions of
uncertainty are rare. Yet predictions often are fragile, resting on unsupported assump-
tions and limited data. Thus, certitude is not credible.

Epidemiological models of disease dynamics, sometimes combinedwithmodels
of macroeconomic dynamics, have been used to reach conclusions about optimal
COVID-19 policy. However, researchers have done little to appraise the realism of
their models, nor to quantify the many uncertainties. Hence, I see little basis to trust
the policy prescriptions that have been put forward.

I am concerned that incredible certitude has been prevalent in both epidemiolog-
ical and economicmodeling. I think itmisguided tomake policy that is optimal in some
conjectured scenario but potentiallymuch less than optimal in reality. It ismore prudent
to approach COVID-19 policy as a problem in decision making under uncertainty.

Facing up to uncertainty, one recognizes that it is not possible to guarantee
choice of optimal policies. Nevertheless, one may still make decisions that are
reasonable in well-defined respects. The approach most familiar to economists has
been maximization of subjective expected welfare. My research has mainly applied
the minimax-regret criterion, which chooses a policy that is uniformly nearest to
optimal across the feasible states of nature.

I suggest adaptive diversification of COVID-19 policy (Manski, 2020a). Adap-
tive policy diversification was proposed and studied in Manski (2009; 2013a).
Financial diversification is a familiar recommendation for portfolio allocation. Diver-
sification enables an investor facing uncertain asset returns to limit the potential
negative consequences of placing “all eggs in one basket.” Analogously, policy is
diversified if a planner facing uncertainty randomly assigns treatment units (persons
or locations) to different policies. At a point in time, diversification avoids gross
errors in policy-making. Over time, it yields new evidence about policy impacts, as in
a randomized trial. As evidence accumulates, a planner can revise the fraction of
treatment units assigned to each policy in accord with the available knowledge. This
idea is adaptive diversification.
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In what follows, Section 2 explains why current epidemiological and macroeco-
nomic modeling cannot deliver realistically optimal COVID-19 policy; my discussion
draws onManski (2020a, b). Section 3 describesmy recentwork quantifying two basic
data uncertainties that make policy analysis difficult (Manski & Molinari, 2020;
Manski, 2020c). Section 4 discusses approaches for policy choice under uncertainty.
This provides background for consideration of adaptive diversification in Section 5.

2. Incredible certitude in epidemiological and
macroeconomic modeling of the pandemic

Epidemiological modelers have sought to determine COVID-19 policy that would be
optimal from a public health perspective if specified models of disease dynamics
were accurate and public health were measured in specified ways. Work by the
Imperial College COVID-19 Response Team in London and the IHME COVID-
19 Health Service Utilization Forecasting Team (2020) at the University of
Washington has been particularly influential. I will use an early report by the Imperial
College Team to make some general points.

2.1 The March 2020 Imperial College report

On 16 March 2020, the Imperial College COVID-19 Response Team made public a
report that provided forecasts of the impact of alternative nonpharmaceutical interven-
tions (NPIs) intended to copewith the COVID-19 pandemic in high-income countries,
with focus on Great Britain and the USA (Ferguson et al., 2020). The forecasts were
made using a modified version of a simulation model previously developed to support
pandemic influenza planning. The Response Team distinguished two broad policy
alternatives, mitigation and suppression, which they described as follows (p. 1):

“Two fundamental strategies are possible: (a) mitigation, which focuses on
slowing but not necessarily stopping epidemic spread – reducing peak health-
care demand while protecting those most at risk of severe disease from infec-
tion, and (b) suppression, which aims to reverse epidemic growth, reducing
case numbers to low levels and maintaining that situation indefinitely.”

Drawing implications from their forecasts, they recommended suppression as the
preferred policy option. Media coverage indicated that the report immediately
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affected policy formation in the UK and the USA, influencing both nations to shift
sharply from mitigation strategies to suppression.1

Should this policy change have occurred? I would confidently say yes if there
were reason to think that the Imperial College report provides a credible integrated
assessment of the impacts of alternative policies. Unfortunately, the report explicitly
did not make an integrated assessment. Moreover, there is reason to question the
credibility of the forecasts that it did offer.

Integrated benefit–cost analysis of COVID-19 policy would consider the full
impacts on society of alternative policy options. The Imperial College report did not
do this. Comparing mitigation and suppression, the Response Team wrote (p. 2):

“We do not consider the ethical or economic implications of either strategy…
Instead we focus on feasibility, with a specific focus on what the likely
healthcare system impact of the two approaches would be.”

Considering impacts on the healthcare system is obviously important. Nevertheless,
it is difficult to understand how the Response Team could justify drawing policy
conclusions based only on consideration of the healthcare system.

From the beginning of the pandemic onward, the public has sought to learn the
broad impacts of policy on social welfare, which requires joint consideration of
healthcare, the economy, education, and other matters. While some have believed that
suppression is the best policy from all perspectives, others have argued the contrary. In
the USA, potential tension between health and economic objectives quickly become
front page news. As early asMarch 24, a headline in theNewYork Timeswas2 “Trump
Considers Reopening Economy, Over Health Experts’ Objections.” As I write this in
the summer, criteria for school re-opening in the fall have become controversial.

Why did not the Imperial College Response Team perform an integrated assess-
ment of the broad impacts of COVID-19 policy? The basic answer is that epidemi-
ological modeling has, since its inception a century ago, mainly been performed by
quantitative researchers with backgrounds in medicine and public health.
Researchers with these backgrounds have found it natural to focus on health con-
cerns, viewing other aspects of social welfare asmatters that may be important but are
beyond their purview.

Thus, the Response Team mentioned in passing that (p. 2): “Suppression…
carries with it enormous social and economic costs which may themselves have

1 See, for example, https://www.nytimes.com/2020/03/17/world/europe/coronavirus-imperial-college-
johnson.html.
2 https://www.nytimes.com/2020/03/23/business/trump-coronavirus-economy.html?action=click&mod
ule=Spotlight&pgtype=Homepage
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significant impact on health and well-being in the short and longer-term.” Yet they
made no attempt to quantify social and economic costs. They effectively ignored
them when reaching their policy conclusion.

Indeed, the epidemiological model used by the Response Team did not consider
how a pandemic may generate behavioral responses within the population. The
Response Team acknowledged verbally that behavioral response may be an impor-
tant determinant of outcomes, stating (p. 1):

“the impact of many of the NPIs detailed here depends critically on how people
respond to their introduction, which is highly likely to vary between countries
and even communities. Last, it is highly likely that there would be significant
spontaneous changes in population behaviour even in the absence of
government-mandated interventions.”

This statement acknowledged that the dynamics of epidemics depend on the deci-
sions that individuals make to protect themselves from infection or ignore the danger.
Nevertheless, the Response Team did not model behavioral responses. Instead, they
invoked assumptions about the fractions of households who would comply with
alternative policies, without justifying the assumptions.

I should note that modeling and analysis of behavioral responses to epidemics
has been a central concern of a separate literature on economic epidemiology, whose
contributors are primarily health economists rather than researchers with back-
grounds in medicine and public health. See Philipson (2000).

2.2 Integrated epidemiological andmacroeconomicmodeling

Following the onset of the pandemic,macroeconomists have sought to expand the scope
of optimal policy analysis by joining epidemiological models with models of macro-
economic dynamics andby specifyingwelfare functions that consider both public health
and economic outcomes. See, for example, Acemoglu et al. (2020), Eichenbaum et al.
(2020), and Thunström et al. (2020). Research of this type is potentially welcome, but
there is little basis to assess the realism of the models that have been developed.

A serious problem in both epidemiological and macroeconomic modeling is the
dearth of evidence available to informmodel specification and estimation. Studies of
infectious disease and macroeconomic dynamics are largely unable to perform the
randomized trials that have been considered the so-called “gold standard” formedical
research. Modeling necessarily relies on observational data, which can be difficult to
interpret even when they are accurate. Moreover, existing data on the COVID-19
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pandemic are notoriously inaccurate. Lacking much evidence, epidemiologists and
macroeconomists have developed models that may be mathematically sophisticated
but that have little grounding.

These modeling efforts may perhaps be useful if interpreted cautiously as
computational experiments studying policy making in hypothetical worlds. How-
ever, their relevance to the real world is unclear. Models differ considerably in the
assumptions they maintain and in the way they use limited available data to estimate
parameters. Researchers provide little information that would enable one to assess
model realism. They do little to quantify uncertainty in the predictions they offer.
Thus, incredible certitude has been prevalent in both epidemiological and economic
modeling of the pandemic.

I see an urgent need for epidemiologists and economists to join forces to develop
credible integrated assessment models of epidemics. Even with the best intentions,
this will take considerable time. There is some reason to hope that epidemiologists
and macroeconomists may be able to communicate with one another because they
share a common language for mathematical modeling of dynamic processes, used to
formalize SIR models and DSGE models respectively. However, each group has in
the past exhibited considerable insularity, which may impede collaboration. More-
over, neither discipline has shown much willingness to face up to uncertainty when
developing and applying models.

Looking ahead towards credible integrated assessment of COVID-19 policy and
public health policymoregenerally, I see lessons to be learned from research onclimate
policy. Climate research was at first a subject for study by earth scientists, who seek to
forecast the impact of emissions on the atmosphere and oceans. Having backgrounds in
the physical sciences, these researchers find it natural to focus on the physics of climate
change rather than behavioral responses and social impacts. Over the past 30years, the
study of climate policy has broadened with the development of integrated assessment
models, with major contributions by economists (Nordhaus, 2013).

As a result, we now have a reasonably sophisticated perspective on how our
physical planet and our social systems interact with one another. This progress has so
far been more qualitative than quantitative. Existing integrated assessment models
make quantitative forecasts, but the credibility of climate models is still limited
(Pindyck, 2017). Climate researchers and covid researchers alike should work to
improve the credibility of their modeling.

3. Data uncertainties

It is widely appreciated that severe data uncertainties limit our knowledge of the past
trajectory and current state of the pandemic. Nevertheless, public health agencies

6 Charles F. Manski

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bca.2020.20
Downloaded from https://www.cambridge.org/core. IP address: 186.231.135.213, on 20 Nov 2020 at 03:01:59, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bca.2020.20
https://www.cambridge.org/core


report point estimates of basic statistics such as infection rates and infection-fatality
rates. These estimates are commonly taken at face value by policy makers and the
public, but they may be highly inaccurate. The result is incredible certitude.

In two recent papers summarized below (Manski & Molinari, 2020; Manski,
2020c), I use partial identification analysis to obtain credible bounds on basic covid
statistics. Study of partial identification removes the traditional focus of economet-
rics and statistics on point estimation obtained under strong assumptions. It poses
weaker assumptions that should be credible in the context under study. Weak
assumptions commonly yield bounds rather than point estimates. Strengthening
the assumptions narrows the bounds. The methodological problem is to determine
the bound that logically results when available data are combined with specified
assumptions. SeeManski (1995; 2003; 2007) for monograph expositions at different
technical levels. See Tamer (2010) and Molinari (2020) for review articles.

3.1 Bounding the COVID-19 infection rate

Manski and Molinari (2020) address the serious problem that accurate characteriza-
tion of the time path of the coronavirus pandemic has been hampered bymissing data.
Confirmed cases have been measured by rates of positive findings among persons
who have been tested for infection. Infection data are missing for persons who have
not been tested.

The persons who have been tested differ considerably from those who have not
been tested. Criteria used to determine eligibility for testing have typically required
demonstration of symptoms associated with presence of infection or close contact with
infected persons. This gives considerable reason to believe that some fraction of
untested persons is an asymptomatic or presymptomatic carrier of the COVID-19
disease. Hence, the actual cumulative rate of infection has been higher than the
reported rate.

A second problem of data quality is that measurement of confirmed cases is
imperfect because the prevalent nasal swab tests for infection are not fully accurate.
There is basis to think that accuracy of nasal swab tests is highly asymmetric, with
few false positive results but many false negative ones. Given this asymmetry, the
actual rate of infection has again been higher than the reported rate.

Combining the problems of missing data and imperfect test accuracy yields the
conclusion that reported cumulative rates of infections are lower than actual rates.
Reported rates of infection have been used as the denominator for computation of
rates of severe disease conditional on infection, measured by rates of hospitalization
and death. Presuming that the numerators in rates of severe illness conditional on
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infection have been measured accurately, reported rates of severe illness conditional
on infection are higher than actual rates.

Researchers have put forward point estimates for infection rates and rates of
severe illness derived in various ways. The estimates differ in the assumptions used.
The assumptions vary and so do the findings. No assumption or estimate has been
thought sufficiently credible as to achieve consensus.

I think it more informative to determine the range of infection rates and rates of
severe illness implied by a credible spectrum of assumptions. Manski and Molinari
(2020) combine available data with credible assumptions to bound the cumulative
infection rate at specific locations and dates. Knowledge of this statistic is essential to
forecast the level of herd immunity that a population has achieved by a certain date. It
is also necessary to calculate probabilities of severe illness conditional on infection,
including risks of hospitalization and death. Knowledge of these probabilities is vital
to inform both personal risk assessment and public health policy.

We explain the logic of the identification problem and we determine the iden-
tifying power of some credible assumptions. In particular, we assume that the
infection rate among untested persons is lower than the rate among tested persons.
We assume a bound on the accuracy of nasal swab tests. Using these and other
assumptions, we derive a bound on the population infection rate.

To illustrate, we analyze data from Illinois, New York, and Italy in March and
April 2020.We obtain bounds that arewide but yield some information. For example,
we find that the cumulative infection rates on April 24 are in the intervals [0.004,
0.525], [0.017, 0.618], and [0.006, 0.471] respectively. The cumulative infection-
fatality rates are in the intervals [0, 0.033], [0.001, 0.049], and [0.001, 0.077].

3.2 Bounding the accuracy of diagnostic tests, with
application to COVID-19 antibody tests

I mentioned above that swab tests for COVID-19 have imperfect accuracy. A false
positive occurs when a result indicates illness, but the person has not been ill. A false
negative occurs when a result indicates no illness, but the person has been ill. In
general, a medical diagnostic test may be informative about current or past illness.
COVID-19 swab tests do the former and antibody tests do the latter. I write “has been
ill” to encompass both types of test.

For personal risk assessment, clinical decision making, and measurement of
population infection rates, one would like to know the positive and negative predic-
tive values of a test. Positive predictive value (PPV) is the chance that a member of a
population who tests positive has been ill. Negative predictive value (NPV) is the
chance that someone who tests negative has not been ill. Accurate measurement of
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PPV and NPV is often difficult. Manski (2020c) explains why and shows how to
derive credible bounds.

Studies of test accuracy regularly report statistics other than PPV and NPV,
sensitivity and specificity. Sensitivity is the chance that an ill person receives a
positive test result. Specificity is the chance that a non-ill person receives a negative
result. Knowing sensitivity and specificity permits prediction of a test result given
true illness status. These predictions are not directly relevant to risk assessment,
clinical decisions, ormeasurement of infection rates. For these purposes, one knows a
test result and wants to predict whether a person has been ill. One does not know
whether a person has been ill and want to predict a result.

Given that PPV–NPV are socially relevant concepts while sensitivity and spec-
ificity are not, it is natural to ask why measurement of test accuracy often focuses on
the latter quantities rather than the former. Part of the answer appears to be that
researchers find it easier to measure sensitivity and specificity. Estimation of PPV–
NPV requires observation of test results and true illness status for a representative
sample of the relevant population, say through random sampling. It may be easy to
observe test results but not true illness status. If it were easy to observe true illness
status, tests would serve no practical purpose.

Whereas observation of true illness status may be difficult in general, researchers
sometimes do so for special groups of persons. This enables estimation of sensitivity
and specificity for these groups. The practice has been to estimate in this manner and
assume that the findings obtained for the special groups hold in the relevant population.

Suppose that sensitivity and specificity have been estimated in some groups and
that one finds it credible to extrapolate to the relevant population. Then PPV–NPV can
bederived viaBayesTheorem if one knows theprevalenceof the disease; that is, the rate
of illness in the population. Unfortunately, it is often difficult to measure prevalence.

COVID-19 presents a case of concern. There are now twomain classes of tests for
COVID-19. Swab tests detect the presence of live virus, signaling an active infection.
Serological tests detect the presence of antibodies that the immune system develops
after onset of infection. The presence of antibodies signals that a personwas infected in
the past. Prevalence is the current population infection rate when testing for active
infection and is the cumulative infection rate when testing to detect antibodies.

It is appreciated that these infection rates are highly uncertain, for the reasons
discussed in Section 3.1. To derive estimates of PPV–NPV for antibody tests, the
U.S. Food and Drug Administration (FDA) assumed that the cumulative infection
rate is 0.05 (U.S. Food and Drug Administration, 2020). However, the FDA recog-
nized that this assumption lacks foundation, stating: “We do not currently know the
prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
antibody positive individuals in the U.S. population, and prevalence may change
based on the duration the virus is in the country and the effectiveness of mitigations.”
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To cope with difficulty in measurement of prevalence, epidemiologists have
developed methods that yield frequentist point estimates or Bayesian posterior
distributions under alternative assumptions. However, the uncertainties in settings
such as COVID-19make it difficult to justify assumptions generating point estimates
or posterior distributions. Rather than make such assumptions, Manski (2020c)
studies partial identification of PPV–NPV given credible bounds on prevalence,
such as those obtained in Manski and Molinari (2020). Applying the methodology
to COVID-19 antibody tests authorized by the FDA, I obtain narrow bounds for NPV
and wide bounds for PPV with the current limited knowledge of prevalence.

4. Criteria for reasonable policy choices under
uncertainty

Juxtaposing themodeling and data uncertainties described in Sections 2 and 3, I think
it essential for benefit–cost analysis to view formation of COVID-19 policy as a
problem of decision making under uncertainty. Modeling and data uncertainties
express incomplete knowledge of the real world, what decision theorists call the
state of nature. Benefit–cost analysis also has to cope with normative uncertainties
about the social welfare function that should be used to measure benefits and costs.
Perennially controversial questions including the appropriate rate of time discount
and assessment of value-of-life. Dudley et al. (2019) provide perspectives on mul-
tiple sources of uncertainty. In this paper, I suppose that the social welfare function
has been chosen and I focus on uncertainty about the state of nature.

The standard formalization of decision making under uncertainty supposes that a
decision maker chooses among a set of feasible actions. The welfare achieved by any
action depends on the state of nature. The decisionmaker lists all states that he believes
could possibly occur. This list, the state space, expresses partial knowledge. The larger
the state space, the less the decision maker knows about the outcome of each action.

The fundamental difficulty of decision making under uncertainty is clear even in
a simple setting with two feasible actions and two states of nature. Suppose that one
action yields higher welfare in one state of nature and the other action yields higher
welfare in the other state. Then the decision maker does not know which action is
better. Thus, optimization is impossible. Ferguson (1967) put it this way (p. 28):

“It is a natural reaction to search for a ‘best’ decision rule, a rule that has the
smallest risk nomatter what the true state of nature. Unfortunately, situations in
which a best decision rule exists are rare and uninteresting. For each fixed
state of nature there may be a best action for the statistician to take. However,
this best action will differ, in general, for different states of nature, so that no
one action can be presumed best overall.”
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Decision theory suggests a two-step decision process. One first eliminates dominated
treatments: an action is dominated if one knows that some other one is at least as good
in all feasible states of nature and superior in some state. One then chooses an
undominated action. This is subtle because there is no optimal way to choose among
undominated alternatives. There are only various reasonable ways, each with its own
properties. The word “reasonable” is not easy to pin down. Ferguson (1967) wrote
(p. 29): “A reasonable rule is one that is better than just guessing.”

4.1 Maximization of subjective expected welfare

What are specific reasonable ways to make an undominated choice?Most familiar to
economists is placement of a subjective probability distribution on the state space and
maximization of subjective expected welfare. These are often called Bayes decisions.
This approach was taken by Nordhaus (2013) and elsewhere in his integrated
assessments of climate policy. It could similarly be used to perform integrated
assessment of COVID-19 policy.

Bayesian decision making is compelling when one feels able to place a credible
subjective distribution on the state space. However, a subjective distribution is a form
of knowledge, and a decision maker may not feel able to assert one. Bayesians have
long struggled to provide guidance and the matter continues to be controversial. The
controversy suggests that inability to express a credible subjective distribution is
common in actual decision settings.

When one finds it difficult to assert a credible subjective distribution, Bayesians
may suggest use of some default distribution, called a “reference” or “conventional”
or “objective” prior. However, there is no consensus on the prior that should play this
role. The chosen prior affects decisions.

4.2 Criteria achieving uniformly satisfactory decisions

When one finds it difficult to assert a credible subjective distribution, a reasonable way
to act is to use a decision criterion that achieves uniformly satisfactory results,whatever
the true state of nature may be. There are two prominent ways to formalize the idea of
uniformly satisfactory results, maximin and minimax-regret (MMR) decision making.

The maximin criterion chooses an action that maximizes the minimum welfare
thatmight possibly occur. Theminimax-regret criterion considers each state of nature
and computes the loss in welfare that would occur if one were to choose a specified
action rather than the one that is best in this state. This quantity, called regret,
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measures the nearness to optimality of the specified action in the state of nature. The
decision maker must choose without knowing the true state. To achieve a uniformly
satisfactory result, he computes the maximum regret of each action; that is, the
maximum distance from optimality that the action would yield across all possible
states of nature. TheMMR criterion chooses an action that minimizes this maximum
distance from optimality.

The maximin and MMR criteria are sometimes confused with one another, but
they yield the same choice only in certain special cases. The former chooses an action
that maximizes theminimumwelfare that might possibly occur. The latter chooses an
action that minimizes the maximum loss to welfare that can possibly result from not
knowing the welfare function. Thus, whereas the maximin criterion considers only
the worst outcome that an action may yield, MMR considers the worst outcome
relative to what is achievable in a given state of nature.

I have applied the maximin and MMR criteria to study many problems of policy
formation, emphasizing MMR. The contexts have included policing (Manski, 2006;
Manski & Nagin, 2017), bank regulation (Brock & Manski, 2011), income taxation
(Manski, 2014), vaccination (Manski, 2010; 2017), and clinical treatment choice
(Manski, 2009; 2013b; 2018; Cassidy & Manski, 2019; Manski & Tetenov, 2020).
These criteria should similarly be applicable to formation of COVID-19 policy.3

5. Adaptive diversification of COVID-19 policy

As Iwrite this during the continuing pandemic, I am unaware of benefit–cost analysis
that uses the decision theory described above to inform choice of COVID-19 policy
under uncertainty. This is unfortunate because the need is urgent. I can, however,
suggest application of a broad idea that can be justified both by Bayesian and MMR
decision making. This is adaptive policy diversification.

There have been frequent calls for adoption of a uniform COVID-19 policy
across locations, particularly across the 50 states of the USA. For example, a 11May
2020 editorial in theWashington Post4 was titled “The patchwork of state reopenings
is a deadly game of trial and error.” The text refers to “the peril posed by the

3 One might also apply hybrid criteria that use a partial subjective distribution on the states of nature. A
planner who asserts a partial subjective distribution could maximize minimum subjective average welfare
or minimize maximum average regret. These criteria combine elements of averaging across states and
concern with uniform performance across states. Statistical decision theorists refer to these criteria as
Γ-maximin andΓ-minimax regret (Berger, 1985). The former criterion has drawn attention from axiomatic
decision theorists, with the terminology max–min expected utility (Gilboa & Schmeidler, 1989).
4 https://www.washingtonpost.com/opinions/the-patchwork-of-state-reopenings-is-a-deadly-game-of-
trial-and-error/2020/05/11/5e255288-9179-11ea-a0bc-4e9ad4866d21_story.html.
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hodgepodge of state decisions to reopen quickly, gradually or not at all yet.” While
warning against decentralization of policy making across the states, the editorial did
not propose what a uniform national policy should be.

Calling for a uniformCOVID-19 policy across states would be justified if it were
clear what constitutes optimal policy and if it were known that the optimal policy is
invariant across states. Then each state should adhere to that policy. However, as
explained above, we do not know what optimal policy is for any state. It may be that
continued suppression is better for some states (or regions) and that some version of
reopening is better for others, depending on their characteristics. Hence, I see no
prima facie case for making policy uniform across states.

It has long been appreciated in the USA that uncertainty may justify decentral-
ization of policy making, enabling the states to experiment with policy ideas.
Supreme Court Justice Louis Brandeis, in his dissent to the 1932 case New York
State Ice Co. v. Liebmann (285 U.S. 311) made what has become a famous remark on
this theme: “It is one of the happy incidents of the federal system that a single
courageous State may, if its citizens choose, serve as a laboratory; and try novel
social and economic experiments without risk to the rest of the country.” It has since
become common to refer to the states as the laboratories of democracy.

The Brandeis statement expresses the “adaptive” aspect of the theme of adaptive
diversification, recognizing that policy variation across states stimulates learning about
policy impacts. The diversification aspect of the theme has been less well appreciated.

To illustrate, consider the choice between suppression and mitigation framed by
Ferguson et al. (2020). Suppression may be the better policy if the Imperial College
model makes reasonably accurate predictions of covid health impacts and if the
economic impacts ignored by the model are relatively small. On the other hand,
mitigation may be the better policy if the model substantially overestimates the covid
health impacts or if the economic impacts ignored by the model are relatively large.
Policy diversification, with some locations implementing suppression and others
implementing mitigation, gives up the ideal of optimality in order to protect against
making a gross error in policy choice. To help inform policy diversification, it would
be useful to develop models that enable credible integrated assessment of covid
policy at the state or regional level.

When diversifying, what fraction of locations should implement each policy
option under consideration? This depends on the welfare function that society uses to
evaluate options and on the uncertainties that afflict prediction of policy impacts.
Manski (2009) studied adaptive diversification when social welfare is utilitarian, and
a planner uses a simple dynamic version of the minimax-regret criterion to cope with
uncertainty. The result is a simple diversification rule. Given specification of an
appropriate welfare function and characterization of the relevant uncertainties, it
should be possible to adapt this analysis to diversify at least some aspects of
COVID-19 policy.

Forming COVID-19 policy under uncertainty 13
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A caveat regarding implementation of adaptive diversification in the USA is that
variation of COVID-19 policy across states is not the result of purposeful random-
ization. It is the result of state-specific decision processes. Federalism empowers the
states to choose their own public health policies.

Nevertheless, federalism does not require that the federal government remain
passive. The federal government can provide incentives to the states to encourage
them to enact desirable portfolios of policies. Thus, the federal government can
encourage adaptive diversification across states, modifying the incentives as knowl-
edge accumulates. The federal government played such an active role in welfare
policy in the late 1980s, when it encouraged states to institute and evaluate variations
on the then-existing program of Aid for Families with Dependent Children
(Manski & Garfinkel, 1992).
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